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ABSTRACT
With the increasing development of automatic driving technology,
the construction of virtual simulation scenes libraries for automatic
driving vehicles, as well as the optimization of coverage of functions
and redundancies based on the current scenes libraries, has become
a problem that needs to be solved in process of the establishing the
Intelligent Vehicle-Infrastructure System (IVIS) test and evaluation
system, especially facing the uncountable inexhaustible library of
actual traffic scenes. The construction of a standardized general
test scene library covering typical scene applications, to provide
a complete closed loop for automated driving vehicle testing also
becomes a necessity.

Based on the traffic big data, this paper takes the intelligent ve-
hicle road system IVIS as the background, and aims to use scene
essential factors, which are indecomposable factors obtained by
scene decomposition, to describe the traffic scenes data, with feature
extraction algorithm notion of unsupervised learning and nonlin-
ear dimensionality reduction as a reference. Choosing traffic cell
modelling, this paper adopts the idea of essential factors as the core
and raises a vectorization process of scenes data as a foundation of
subsequent research of the generation algorithms.

On the basis of primitive scene decomposition, two core goals are
set: study the typical test scenes of IVIS High-fidelity and flexible
reconstruction technology and research on the scalable and easy-to-
test generation technology of IVIS extreme test scenes. With scene
vectorization process as the fundament, this paper attempts to select
and optimize a suitable clustering algorithm, to use an improved
density clustering algorithm called OIR-DBSCAN, to generate IVIS
typical scenes, and accordingly ensure the generalizability and
timeliness of the IVIS test.
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1 INTRODUCTION
In today’s age of information explosion, the technology used for
autonomous vehicles in the field of intelligent transportation is
changing rapidly. However, there has been no corresponding break-
through in the development of test and evaluation technologies for
autonomous vehicles [1].
Traditional vehicle performance testing is no longer sufficient to
meet the increasing demand for autonomous driving testing [2].
So, on this basis, unlike the real vehicle testing environment where
adequate space is highly demanded and numerous real vehicles may
be damaged, the virtual testing method based on traffic scene data
has huge technical advantages, both in terms of testing efficiency
and testing costs. [3]
Although the importance of the simulated test scenes are proposed,
due to the inexhaustible nature of real traffic scenes, the industry
does not yet have an applicable solution. Therefore, this paper focus
on raising a new method to generate the typical IVIS test scenes,
as an important tool for future autonomous vehicle testing and
verification.

1.1 Intelligent Vehicle-Infrastructure System
The concept of Intelligent Vehicle-Infrastructure System (IVIS) rep-
resents the latest technological frontier of transportation. Unlike
the traditional approach where the vehicle is the only intelligent
body and the core of the test, the IVIS concept means that the ex-
isting test treats the intelligent driving vehicle as one element and
the surrounding environment, including the current road and road
test equipment, as the other element, treating them equally and
therefore allowing for greater similarity to the reality during the
test. [4]
However, due to the convenience of the preceding process in tradi-
tional testing, IVIS products are less likely to be rolled out or used
on a large scale in the current situation; in this regard, the complete
set of test equipment for IVIS product access certification, as well as
the supporting professional test site, play a vital role in influencing
the overall situation. Therefore, it is important to maximize the
coverage of the test and evaluation functions of the scenes, at a low
cost in terms of time and money, and with limited site resources.
Considering the purpose of autonomous driving testing, which is
through functional testing within a given scene, the final evaluation
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Figure 1: Autonomous Driving Simulation Test Scene.

of the autonomous vehicle is derived, in terms of functionality and
comfort, and most importantly, safety, and other aspects, which can
thus be used as important indicators for assessing autonomous ve-
hicles, in terms of functional completeness and safety performance
and various aspects.
Due to the uncertainties associated with real-life scene testing, the
construction of virtual scenes is often the first step in testing the
functionality of a self-driving car with the help of simulation before
the real-life functional tests are carried out.

1.2 Typical Scene Generation Based on
Essential Factors

Based on the above description, the major concern of the research
is how to reproduce real scenes credibly in virtual scenes and simu-
lations, taking into account the inexhaustible nature of real traffic
scenes. [5] The research aims to adopt techniques for the high-
fidelity and flexible reconstruction of typical IVIS test scenes and
to develop a mixed reality-based test scene construction system to
solve the key common problems of construction, verification and
evaluation and deployment optimisation of extreme test scenes for
IVIS systems.
In the research of the above problems, a standardized common test
scene library covering typical scene applications and extreme scene
conditions is identified to be established to provide support for IVIS
product access, enabling a complete closed-loop to be formed for
the autonomous driving vehicle testing process at the same time.
An example of an autonomous driving test scene is shown in the
figure 1 [6].
Based on the research background overview, in general, this paper
has the following aims.
Firstly, adopt a non-linear dimensionality reduction and unsuper-
vised learning feature extraction algorithm to decompose and to
extract the minimum elements for a given traffic scene input. [7]
While ensuring the interpretability and practical significance, the
extracted scene primitive elements will be used as the basis for the

Figure 2: Construction of Simulation Test Scenes Based on
Real Traffic Data.

subsequent traffic scene reconstruction to realise the real traffic
scene and the sample and the construction of the pathway between
real traffic scenes and sample data. [8-9] Secondly, the virtual sim-
ulation environment with similar probability distribution as the
real traffic scenes is generated as closely as possible and used as
the basis for the subsequent deployment of IVIS scenes. To ensure
the transferability of test results, the basic tool considered is the
construction of a traffic test scene based on real data as shown in
the figure 2 [6].
To ensure the universality and timeliness of the IVIS test, the typical
scenes are extracted from the scene library generated based on
real scene data and used as the base scene library for subsequent
autonomous vehicle testing.

2 SCENE VECTORIZATION
As a test scene for an intelligent vehicle road system (IVIS), the
traffic scene, which is on an equal footing with the autonomous
vehicle under test, should also be considered as a target for scene
generation, in addition to its static factors, such as the dynamic
factors of the intelligent body. On this basis, we can first split the
problem into the generation of the parameters for the scene, i.e. the
generation of the following parameters.

θenv =
(
θstatic ,θdynamic

)
θenv is the overall traffic scene environment parameter, while
θstatic and θdynamic are the static and dynamic part of the pa-
rameter, respectively. It is worth noting that the static parameters
include the coordinates, speed, acceleration, lane conditions, ambi-
ent state, road conditions, weather conditions and other factors of
the various components of the scene at the beginning of the phase.
While the dynamic parameters, which do not refer to changing
parameters such as speed, represents the parameters of the intel-
ligence that will change dynamically according to the observed
traffic conditions, such as the controller of the autonomous vehicle,
the neural network parameters, etc.

2.1 Feature Extraction and Essential Factors
The basic idea of the paper is to adopt the "Extract-Build-Optimise"
technique, which is based on the existing traffic scene database
and uses non-linear dimensionality reduction and unsupervised
learning methods to study the extraction of primitives and the
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Figure 3: Nine-Square Grid Modeling of Traffic Scenes.

subsequent parameterisation of road traffic elements under typical
and extreme scene conditions.
Once the scenes are decomposed into essential factors, the combi-
nation of the essential factors and their internal coupling allows
us to express more types and sizes of traffic scenes more easily,
forming a good pavement for the subsequent research.
In this regard, for each input scene data, the existing scene is con-
tinuously quadratic to the smallest unit of which is maximumly
divided is retained, and the rest ones continue to repeat the opera-
tion [10] until the current input of the existing scene completely
becomes the smallest constituent unit. At this point, these basic
units, formed by the algorithm’s continuous segmentation, can be
used as the core for the next step, the reverse of scene generation
and representation.
For scene construction, we must define the fundamental elements
of the scene, and for any scene, we wish to concretely represent
the abstract scene using the obtained scene primitives, in this way
completing the data structure description of the variables in the
environment.

2.2 Traffic Scene Modeling
Having identified the use of primitive ideas to disentangle the
problem, the question of how to model it concretely also becomes
a matter for consideration. Wolf et al. proposed a nine-box format
for modelling [11], i.e. for the currently moving vehicle, consider
dividing it, together with its surroundings, into a nine-box space,
with the current vehicle as to the core. Vehicles directly in front,
directly behind, left in front, left behind, right in front, right behind,
right to the left and right to the right are taken into account for their
driving decisions and environmental interactions. This is shown in
the figure 3 [12].
While modelling in the nine-box format provides a more complete
picture of vehicle-environment interactions, at larger data scales, it
also has a correspondingly larger number of redundant situations -
in most normal traffic situations, a vehicle will not be surrounded
by eight vehicles travelling around it; similarly, most vehicles in
a traffic scene will not be in a relatively. In the same way, most
vehicles in a traffic scene are not relatively stationary. Therefore,
except the vehicles directly in front and behind, the core vehicle
in motion, with multiple driving vehicles to its left or right, is in a
changing position relative to the main vehicle, and is hardly ever

Figure 4: Traffic Scene Unit Cell Modeling.

to the left or right, and if it is, it is usually not maintained as a state
for long.
Considering the above scene, we choose another modelling ap-
proach - traffic scene cellular modelling - as the basic model. In
this way, not only is the space in front of the main vehicle but also
the space to the left and right thereof is arranged in two relative
positions. In this way, not only is the information about the inter-
action between the vehicle under test and the space of the moving
traffic environment not lost but most of the redundant data could
be removed. The details are shown in the figure 4 [5].
Ultimately, based on the crystalline modelling of the traffic scenes,
in the actual vectorisation process, the presence of the element of
the central main vehicle driving state can be taken into account
and its decision space scope reduced and simplified to the traffic
scene environment space on one side.
Specifically, the description and composition sample set of the IVIS
scene, using the decomposed essential factors, is characterised in
the form of vectors. The vectors are as follows.

2.3 Traffic Scene Vectorized Expression
[[Host Vehicle Elements], [Traffic Participant Elements], [Road Ele-
ments], [Traffic Signal Elements], [Environment Elements], [IVIS
Logical Relationship/Interaction Mode], [Other Parameters]]
Because more than one element exists for each component, each
component is thus set up as a vector again, as follows:
[Host Vehicle Elements] contains three components, which are the
main vehicle speed, travel state and acceleration with or without
limits.
Considering the desire for the main vehicle speed to have as little
impact on the vector as possible, and also to have less impact on
the scene vector once the vehicle speed reaches a larger value, the
larger unit of measure is used, and the main vehicle speed is set
based on the actual vehicle speed with a value of

√
vReal
60 .

For better unification, it is desired to characterise the behaviour of
reversing and steering in the same mode as the driving state during
scene vectorisation, therefore, the introduction of an acceleration
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vector set is considered, where the driving state is characterised
by a combination of longitudinal and lateral acceleration value as
[aV er tical ,aHorizontal ], and the value is the actual acceleration
value aReal .
The values are [0, 0] for unrestricted acceleration, and
[aLower ,aUpper ] for the combination of the lower and up-
per values of the actual acceleration.
The [Traffic Participant Elements] contains two components, the
follower vehicle attribute and the non-motorised vehicle and pedes-
trian attribute, which are categorised and considered as an example:
For collision avoidance purposes, all rear-end vehicles should be
taken into account as remote vehicles:
When going straight or reversing, consider one vehicle to the front
and one to the left and right, and when considering vehicles to the
left or right, set a lateral relative position threshold, giving priority
to vehicles that reach the threshold, and when the threshold is not
reached, give priority to the closest relative position relative to the
vehicle travelling in the forward direction.
When turning left or changing lanes to the left, only the vehicle in
front and up to two vehicles to the left need to be considered, using
these three as remote vehicles, and the same when turning right or
changing lanes to the right or making a U-turn.
Thus, in [Traffic Participant Elements]:
Remote vehicles are ranked according to their influence on the
driving situation of the main vehicle, with priority given to remote
vehicles in the same lane for specific reference, and then from left
to right.
The remote vehicle attributes are [Remote Vehicle Speed, Remote
Vehicle Acceleration, Remote Vehicle Position, Remote Vehicle Pri-
ority], and similarly to the master vehicle:
The remote vehicle speed is taken as

√
vReal
60 , the acceleration is

taken as its actual value, and the remote vehicle position corre-
sponds to [Lateral Relative Position, Longitudinal Relative Posi-
tion].
The lateral relative position is {left = −1, right = 1, same lane = 0},
the longitudinal relative position is {front = 1, back = −1, side by
side = 0}, if [0, 0] means there is no corresponding remote vehicle;
if the remote vehicle has priority to pass then the value is in f ,
otherwise the value is 0.
The non-motorized vehicle and pedestrian attributes are {Non-
motorized Vehicle and Pedestrian Position, Non-motorized Vehicle
and Pedestrian Relative Speed Direction}, where the position corre-
sponds to that of the remote vehicle, i.e. [Lateral Relative Position,
Longitudinal Relative Position], where:
Lateral relative position is {left = −1, right = 1, same road = 0},
longitudinal relative position is {front = 1, rear = −1, side-by-
side = 0}, if [0, 0]means there is no corresponding non-motorized
vehicle and pedestrian.
The relative velocity direction is [Lateral Relative Velocity Direction,
Longitudinal Relative Velocity Direction], where lateral relative
velocity direction is {relative left = −1, relative right = 1, relative
same road = 0}, longitudinal relative velocity direction is {relative
forward = 1, relative backward = −1, relative side by side = 0}, if
[0, 0] means relative stationary or non-existent, for non-motorised
vehicles or pedestrians need not be considered.

The [Road Elements] contains four components, namely road lin-
earity, motorway attributes, road section attributes and road width,
where the road linearity attribute is the radian value representation
of the curvature of the road.
Motorway attributes are [One/BothWays, Number of Lanes], where
one way = 1 and two ways = 2 and the number of lanes is the true
number.
The road section attribute is {ordinary road section = 1, section
entry/exit = 5, four-branch fork = 10}.
Road width values are the actual road width values.
The value is 0 if there is no traffic signal and 10 if there is.
The [Environment Elements] contains three components, namely
weather attributes, scene closure and traffic flow control attributes.
Considering the effect of weather on sight lines and road conditions,
an enumeration assignment is made so that the weather attribute is
{sunny = 0, windy = 0.5, cloudy = 1, foggy = 1.5, dusty = 3, rainy
= 4, snowy = 5, hail = 9}.
The period attribute is [day= 1/night= 0, with lighting= 1/without
lighting= 0, with tunnel= −1/without tunnel= 0], then the actual
data processing can be considered to sum this item, i.e. equivalent
to the actual situation, with lighting at night ≈daytime.
The [Other Parameters] contain a component

√
3.6D

10vmax
, D i.e. the

distance between the device under test and the smart body.
After digitization according to the above classification rules, it can
be imported into the subsequent processing algorithm.

3 TYPICAL SCENE GENERATION
Due to the uncertainties in real-world scene testing, simulations
and virtual scenes are often used to initially test the functionality
of autonomous vehicles before real-world testing. To improve the
testing efficiency of autonomous vehicles in virtual simulation
scenes generated based on real data, it is difficult to avoid the need
to remove redundant scenes and identify representative scenes to
guide the construction of test scenes and test environments.
And since real traffic scenes are inexhaustible and difficult to repro-
duce credibly, we develop a mixed reality-based test scene construc-
tion system to study the high-fidelity and flexible reconstruction
technology of IVIS typical test scenes, solve key common problems
such as the construction, verification evaluation and deployment
optimization of IVIS system test scenes, and can consider starting
from clustering algorithms to realize the generation and deploy-
ment of typical scenes.

3.1 Algorithm Selection
K-Means clustering [13] requires the number of clusters to be spec-
ified in advance, and can only target spherical clusters, which is
difficult to achieve for large scale IVIS traffic scenes without a priori
knowledge.
The hierarchical clustering algorithm [14], on the other hand, is not
very suitable for traffic scenes with high dimensionality and, is not
conducive to solving the problem at hand due to its long computing
time when the data size increases at the same time.
Therefore, density-based clustering algorithms are a more appropri-
ate choice when considering the actual deployment of scenes and
how closely they interact with each other. As a well-known den-
sity clustering algorithm, the DBSCAN algorithm [15] can achieve
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Figure 5: OIR-DBSCAN Clustering Algorithm Flow.

the need to measure the closeness of the inscribed input samples
by setting the clustering cluster neighborhood distance parameter,
regardless of the shape of the sample clusters.
The DBSCAN algorithm finds the corresponding solution as the
process of finding clusters that satisfy both connectivity and maxi-
mality, i.e.
For a core object x , the set of all samples that are reachable by its
density is denoted as
X={x‘∈ D|x‘ is density-reachable by x}
Then X is the target cluster.

3.2 Improved DBSCAN Algorithm
Considering the specific implementation, the basic DBSCAN al-
gorithm, with its global parameters, is less typical of the results
obtained for datasets with uneven density.
Therefore, for the existing IVIS traffic scene dataset, an improved
OIR-DBSCAN algorithm is used, with the addition of initial point
optimization, and the link of adaptive clustering radius for differ-
ent clusters, as shown in the figure 5Denote the inverse k−nearest
neighbors of x as Rk (x) = R, which satisfies the following condi-
tions.
Usually take k = 1, i.e. y is the reverse nearest neighbor of x ⇔ x
is the nearest neighbor of y.
And for clustering initial points, also modified from random selec-
tion accordingly to, pick the point with the smallest value in the
list, and for any point, the specific calculation process is

Value (init) =
1

minit
+

k−1∑
i=0

KNNMatrix (init , i) (minit , 0)

After obtaining the point with the smallest value in the list and
making it the initial point for clustering, the following steps are
repeated iteratively: start clustering from the first initial point,
delete the samples that already have labels at the end, select the
initial point for clustering at the start of the next iteration and
repeat the above operation until the end of clustering.
For five types of scenes: security, efficiency, information service,
formation vehicles and commercial vehicles, respectively, DBSCAN

Figure 6: Generation of Typical Security Scenes under DB-
SCAN Algorithm.

Figure 7: Generation of Typical Efficiency Scenes under DB-
SCAN Algorithm.

cluster analysis can be performed to obtain typical scene generation
results. The legend and silhouette scores are shown as follows:
As shown in figure 6, the security class has 170 original scenes in
total, 30 typical scenes can be obtained, and the resulting silhouette
score is SC = 0.879.
As shown in figure 7, The efficiency class has 30 original scenes in
total, 11 typical scenes can be obtained, and the resulting silhouette
score is SC = 0.802
As shown in figure 8, The information service class has 57 original
scenes in total, 7 typical scenes can be obtained, and the resulting
silhouette score is SC = 0.884.
As shown in figure 9, The formation vehicles class has 58 original
scenes in total, 5 typical scenes can be obtained, and the resulting
silhouette score is SC = 0.835.
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Figure 8: Generation of Typical Information Service Scenes
under DBSCAN Algorithm.

Figure 9: Generation of Typical Formation Vehicles Scenes
under DBSCAN Algorithm.

As shown in figure 10, The commercial vehicles class has 25 original
scenes in total, 4 typical scenes can be obtained, and the resulting
silhouette score is SC = 0.803.

4 CONCLUSION
As the most basic core principle idea of this article, by drawing on
the idea of non-linear dimensionality reduction and unsupervised
learning feature extraction algorithm, the idea of scene primitives
as the smallest element after scene decomposition is proposed. It
should be noted that the primitive idea has become the basis of the
subsequent scene generation algorithm. In order to better match
with the optimization of the redundancy coverage of the scene
library, after horizontal comparison, this paper selects the road
traffic unit cell modeling, combined with the primitive idea, as the
description of the IVIS scene. In specific applications, a rule flow

Figure 10: Generation of Typical Commercial Vehicles
Scenes under DBSCAN Algorithm.

for vectorization of scene primitive data has also been proposed,
which reduces the redundancy of description data in the existing
scene library.
In terms of typical scene generation algorithms, in order to improve
the test efficiency of IVIS test evaluation scenes for autonomous
vehicles while ensuring test safety, for virtual simulation scenes gen-
erated based on existing scene libraries and real data, it is necessary
to Data redundancy is removed. After preliminary investigation
and experimentation, an improved density clustering OIR-DBSCAN
algorithm with adaptive radius was finally selected to find repre-
sentative scenes and guide the construction of test scenes and test
environments.

5 PROSPECT
As the most basic core principle idea of this article, by drawing on
the idea of non-linear dimensionality reduction and unsupervised
learning feature extraction algorithm, the idea of scene primitives as
the essential elements after the scene decomposition is proposed. It
should be noted that the essential elements have become the basis of
the subsequent scene generation algorithm. In order to better match
with the optimization of the redundancy coverage of the scene
library, after horizontal comparison, this paper selects the road
traffic unit cell modeling, combined with the essential elements, as
the description of the IVIS scene. In specific applications, a rule flow
for vectorization of data expressed by the essential elements has
also been proposed, which reduces the redundancy of description
data in the existing scene library.
In terms of typical scene generation algorithms, it is necessary to
remove the data redundancy, in order to improve the test efficiency
of IVIS test evaluation scenes for autonomous vehicles while en-
suring testing safety, for virtual simulation scenarios generated
based on existing scenario libraries and real data. After preliminary
investigation and experimentation, an improved density clustering
OIR-DBSCAN algorithm with adaptive radius was finally selected
to find representative scenarios and guide the construction of test
scenarios and test environments.
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Based on the idea of the essential elements, the proposed IVIS test
and evaluation scene data vectorization rules can be better applied
to the tasks of current research topics. However, as a relatively
new field, there are still many rules related to scene the essential
elements. The large development and research space are a vast
blue ocean. Whether it is for the construction of the simulation
platform or for the optimization of the function and redundancy
coverage of the IVIS scene, the improvement of this part will become
a continuous work.
For the research of typical scene generation algorithm in this paper,
although the improved OIR-DBSCAN algorithm based on density
clustering is initially selected, it will continue to explore related
algorithms in order to write the typical scene generation algorithm
that best meets the current research problem. Similarly, on the
basis of the improvement of primitive rules, the sensitivity of the
algorithm to the data scale and its robustness to the change of the
scene state will be both included in the further research in the
follow-up.
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